10MCA23

Max. Marks:100

Second Semester MCA Degree Examination, June 2012 Data Structures Using 'C'

Time: 3 hrs.

USN

Note: Answer any FIVE full questions.

- 1 a. What are pointers? Explain the operators associated with pointer operations. Briefly discuss pointer arithmetic operations. (08 Marks)
 - b. Define abstract data type (ADT). Describe complex numbers as an ADT which supports addition and subtraction operations. (06 Marks)
 - c. Let $f(n) = 10n^3 + 5$. Explain f(n) using Big Theta (θ) notation.
- **2** a. Explain structures and unions.
 - b. Discuss how one dimensional array of integers is declared in C using static and dynamic allocation. (06 Marks)
 - c. Explain sparse matrix. Discuss how sparse matrix shown below is represented differently using array.
 - 15 0 0 22 0 -153 0 0 0 0 11 0 0 0 -6 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 28 0 0 0 0
- 3 a. Convert the following infix expressions to postfix and prefix expressions : (06 Marks) i) $a \times (b+c)/d-g$ ii) $a \times ((b+c \times d) / g + h) - f$ iii) $(a+b) \times d + e / (f + a \times b) + c$.
 - b. Write an algorithm to convert a valid infix expression to pestfix expression and trace the algorithm with the contents of the stack for the expression $a \times (b + c) \times d$. (08 Marks)
 - c. Explain queue as a data structure. Write C functions for insert and delete operations for a circular queue of integers. (06 Marks)
- 4 a. Discuss about linked list. List the advantages and disadvantages of linked lists over arrays. Write the syntax for defining a node that can store a complex number. (06 Marks)
 - b. Write an algorithm to invert (reverse) a singly linked list i.e. arrange the nodes in reverse order. (06 Marks)
 - c. Consider the polynomial given below : $a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$.
 - i) Define a node in C to store one term data in a node.
 - ii) Diagrammatically represent the polynomial as a linked list. (08 Marks)
 - iii) Write an algorithm to search the linked list of above polynomial for a term with x^k .
 - a. Explain tree as a data structure.
 - b. Define the following trees with examples :
 - i) Complete Binary tree ii) Binary search tree iii) Threaded Binary tree.

(06 Marks)

(06 Marks)

5

(08 Marks)

(06 Marks)

(06 Marks)

ee.

10MCA23

c. Write the inorder, preorder, postorder and level order sequence for the tree given below : (04 Marks)

	d.	Write a C function to count the number of nodes in a binary tree.	(04 Marks)
6	a.	Write an algorithm to insert an element into a binary search tree.	(06 Marks)
	b.	Explain single and double ended priority queues.	(06 Marks)
	c.	Define a graph. What is an adjacency matrix? Show an example for adjacency	matrix with
		respect to a weighted graph.	(04 Marks)
	d.	Write an algorithm for depth first search (DFS).	(04 Marks)
7	a.	Define Binomial, Fibonacci and Pairing heaps with examples.	(09 Marks)
	b.	Define Red – Black tree. Explain how insertion and deletion is done in Red – Bl	ack trees. (06 Marks)
	c.	Differentiate between Binary search tree and Optimal Binary search tree.	(05 Marks)
8	Write short notes on :		
	a.	Role of stack in recursion.	
	h	Doubly linked list	

- b. Doubly linked list.
- c. AVL trees.
- d. Asymptotic Notations.

(20 Marks)
